1. Magnetic force is a non-contact force.
(a) Which two of these are also non-contact forces?

Tick ($\sqrt{ }$) two boxes.

Air resistance

Electrostatic \square

Friction

Gravitational

Tension

(b) Figure 1 shows a bar magnet.

Figure 1
B

Which letter shows the position where the magnetic field around the bar magnet is strongest?

Tick (\checkmark) one box.
A

B \square
C \square
D \square
(c) When two magnets are brought close to each other they exert a force on each other.

Describe how two bar magnets can be used to demonstrate a force of attraction and a force of repulsion.

Force of attraction \qquad
\qquad
Force of repulsion \qquad
\qquad

Figure 2 shows some paper clips that are attracted to a permanent magnet.
Figure 2

(d) The paperclips become magnetised when they are close to the permanent magnet.

What is the name of this type of magnetism?
Tick (\checkmark) one box.

(e) Label the north and south poles of the two magnetised paper clips in Figure 2.
2. The diagram shows a gymnast on a piece of gymnastic equipment.

The equipment consists of two bars at different heights.

(a) The gymnast exerts a downward force on the bar.

What is the size of the upward force acting on the gymnast from the bar?
Tick ($\sqrt{ }$) one box.

It is greater than the downward force. \square

It is less than the downward force. \square

It is the same size as the downward force. \square
(b) Why is the weight of the gymnast represented by an arrow?

Tick (\checkmark) one box.

Weight is a constant.

Weight is a scalar.

Weight is a unit.

Weight is a vector.

(c) The diagram above shows the weight of the gymnast acting from a point.

What name is given to this point?
Tick (\checkmark) one box.

Centre of force

Centre of mass \square

Centre of tension \square

Centre of weight \square
(d) The gymnast has a mass of 45 kg
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the weight of the gymnast.
Use the equation:

$$
\text { weight }=\text { mass } \times \text { gravitational field strength }
$$

\qquad
\qquad
\qquad
\qquad

$$
\text { Weight }=\ldots \mathrm{N}
$$

(e) The gymnast swings from one bar to the other bar several times.

Describe how the gravitational potential energy store and the kinetic energy store of the gymnast change as she moves between the bars.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) Falling on the crash mat reduces the average deceleration of the gymnast compared with falling on a hard surface.

Explain why reducing the deceleration is important to the gymnast.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Figure 1 shows two children playing table tennis.

The boy hits the ball from one end of the table.
Figure 1

(a) Why does the velocity of the ball change when the boy hits it?

Tick ($\sqrt{ }$) one box.

The direction of the ball does not change. \square

There is a resultant force on the ball. \square

The mass of the ball increases.

The speed of the ball is constant. \square
(b) The ball has an average speed of $11 \mathrm{~m} / \mathrm{s}$

The ball takes 0.25 s to travel the same distance as the length of the table.

Calculate the length of the table.
Use the equation:

$$
\text { distance travelled }=\text { speed } \times \text { time }
$$

\qquad
\qquad
\qquad
\qquad
Length of table $=\ldots \mathrm{m}$
(c) A table tennis ball should only be used if it bounces to at least 75% of the height it was dropped from.

A manufacturer tested a table tennis ball.
The table shows the results.

Height ball was dropped from in $\mathbf{c m}$	Height of bounce in cm
30.0	25.1

Determine whether the ball can be used.
Use the data from the table above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Figure 2 shows two table tennis balls.

The balls are different sizes but have the same mass.
Figure 2

Both balls were dropped onto the table from the same height.
After they were dropped, the resultant force on the smaller ball was greater than the resultant force on the larger ball.

Explain why.
\qquad
\qquad
\qquad
\qquad
4. The thinking distance of a car depends on the reaction time of the driver.

The graph shows how thinking distance varies with reaction time for a car travelling at $30 \mathrm{~m} / \mathrm{s}$

(a) The reaction time of a driver can double if the driver is distracted.

Explain the effect doubling the reaction time has on the thinking distance.
Use data from the graph above.
\qquad
\qquad
\qquad
\qquad
(b) Give the reason why there are no values of thinking distance for reaction times less than 200 milliseconds.
\qquad
\qquad

A driver measured her reaction time using an online test. She did the test five times.
The table shows the results.

Reaction time in milliseconds				
258	265	302	248	327

(c) How does the data in the table show that it was important that the driver did the test five times?
\qquad
\qquad
(d) Calculate the mean reaction time of the driver.
\qquad
\qquad
\qquad
\qquad
Mean reaction time $=$ \qquad ms
(e) The driver is driving her car at $30 \mathrm{~m} / \mathrm{s}$

Determine the thinking distance.
Use the graph and your answer from part (d).
Thinking distance $=$ \qquad m
(f) The driver applies the brakes and the car comes to a stop.

The force exerted by the brakes affects the braking distance.
Give two other factors that affect the braking distance.
1 \qquad

2 \qquad
(g) Write down the equation that links distance, force and work done.
\qquad
(h) When the driver applies the brakes, there is a constant resultant force of 6.0 kN on the car.

The car travels a distance of 75 m before stopping.
Calculate the work done in stopping the car.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Work done $=$ \qquad J
(Total 13 marks)
5. The Sun emits all types of electromagnetic waves.

Figure 1 shows the electromagnetic spectrum.
Figure 1

Radio waves	Microwaves	Infrared	Visible light	Ultraviolet	X-rays	Gamma rays

(a) Complete the sentences.

Choose answers from the box.

frequency	mass	power	
	velocity		wavelength

In a vacuum, all electromagnetic waves travel at the same \qquad .

Gamma waves have the greatest \qquad .

Radio waves have the greatest \qquad .
(b) Explain why it is important that the Earth's atmosphere absorbs gamma rays emitted by the Sun.
\qquad
\qquad
\qquad
\qquad
(c) Some microwaves are not absorbed by the Earth's atmosphere.

Why is this useful?

Some ultraviolet (UV) radiation from the Sun passes through the atmosphere and reaches the surface of the Earth.

The amount of UV radiation that reaches the surface of the Earth can be measured on a scale called the UV index.

Figure 2 shows the average midday UV index in the UK for 1 year.
Figure 2

(d) Why is exposure to UV radiation harmful to humans?
\qquad
\qquad
(e) Compare the risk from UV radiation at different times of year in the UK.

Use data from Figure 2.
\qquad
\qquad
\qquad
\qquad
6. The electromagnetic spectrum is made up of waves with different wavelengths and frequencies.
(a) Draw one line from each type of electromagnetic wave to a use of that type of wave.

Electromagnetic

wave
\square
Radio waves

Detecting broken bones

Fibre optic communications

Transmitting TV programmes

A student investigated how the type of surface affects the amount of infrared the surface radiates.

The student used a hollow metal cube.
Four of the surfaces of the cube were different.

This is the method used.

1. Fill the cube with hot water and seal it with a lid.
2. Measure the infrared radiation emitted from each surface using an infrared detector.

The diagram below shows the equipment used.

(b) Table 1 shows some of the variables in this investigation.

Table 1

Variable	Independent	Dependent	Control
Distance between infrared detector and surface of cube			\checkmark
Starting temperature of water inside cube			
Temperature measured by infrared detector			
Type of surface			

Identify each variable as an independent, dependent or control variable.
Tick (\checkmark) one box in each row on Table 1.
One row has been completed for you.

Table 2 shows the results.

Table 2

Type of surface	Temperature in ${ }^{\circ} \mathbf{C}$
Shiny black	66.5
Matt white	61.0
Matt black	69.0
Shiny silver	26.0

(c) What was the resolution of the infrared detector?

Tick (\checkmark) one box.
$0.5^{\circ} \mathrm{C}$

$1.0^{\circ} \mathrm{C}$

$26.0^{\circ} \mathrm{C}$

$66.5^{\circ} \mathrm{C}$

(d) What was the range of temperatures recorded?

$$
\text { Range }=\ldots{ }^{\circ} \mathrm{C} \text { to }
$$

(e) Complete the chart below.

You should:

- plot the data from Table 2 as a bar chart
- label each bar.

Type of surface
(f) Give one conclusion that can be made from the results in Table 2.
\qquad
\qquad
(g) Which equation links frequency (f), wavelength (λ) and wave speed (v) ?

Tick (\checkmark) one box.

$$
\begin{aligned}
& f=v \times \lambda \\
& v=f \times \lambda \\
& v=\frac{f}{\lambda}
\end{aligned}
$$

(h) A radio wave has:

- a speed of $300000000 \mathrm{~m} / \mathrm{s}$
- a wavelength of 500 m

Calculate the frequency of the radio wave.
Give the unit.
Choose the unit from the box.

hertz	kilograms	metres	seconds

\qquad
\qquad
\qquad
\qquad
\qquad
Frequency = \qquad Unit \qquad
7. Figure 1 shows a runner using a smart watch and a mobile phone to monitor her run.

Figure 1

Figure 2 is a velocity-time graph for part of the runner's warm-up.
Figure 2

(a) Determine the total time for which the velocity of the runner was increasing.
\qquad
\qquad
Time $=\square \mathrm{s}$ s
(b) Determine the deceleration of the runner.
\qquad
\qquad
\qquad
\qquad
Deceleration $=\ldots \mathrm{m} / \mathrm{s}^{2}$

The smart watch and mobile phone are connected to each other by a system called Bluetooth.
Bluetooth is wireless and uses electromagnetic waves for communication.
(c) Suggest why the phone and watch being connected by a wireless system is an advantage when running.
\qquad
\qquad
(d) Write down the equation that links frequency, wave speed and wavelength.
\qquad
(e) The electromagnetic waves have a frequency of 2400000000 Hz

The speed of electromagnetic waves is $300000000 \mathrm{~m} / \mathrm{s}$
Calculate the wavelength of the electromagnetic waves.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Wavelength $=$ \qquad m
(f) The table shows some information about four types of Bluetooth.

Type	Power in milliwatts	Range in metres
1	100	100
2	2.50	10.0
3	1.00	1.00
4	0.50	0.50

Mobile phones use type 2 Bluetooth to communicate with other devices.
Suggest two reasons why.
1 \qquad
\qquad

2 \qquad
\qquad

