Question	Answer	Marks	Notes and guidance
I	3.1583	2	Award I mark for $\frac{7.58}{2.4}$ or $\frac{379}{120}$ seen or implied Accept 3.158333(3)
2a	3(2a + 1)	I	
2b	8p - 9	2	Award I mark for two correct expansions 6p - 15 + 2p + 6 or one term correct
3a	(3, 2)	I	
3Ь	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I	Accept any clear indication

3c	p = 1	I	Accept I
4a	y ⁶	I	
4b	8z ¹⁵	2	Award I mark for either a correct coefficient or power of z
5	\$51.20 or £37.65	2	Award I mark for a correct method to convert dollar to pounds, or pounds to dollars, seen or implied e.g. 920×1.36 (= 1251.20) or 1200 ÷ 1.36 (= 882.35)
6	£2152.96	3	Award I mark for a correct full method to reduce 2500 by 7.2% once seen or implied e.g. 2500×0.928 (= 2320) Award 2 nd mark for a full correct method to find the price of the computer after 2 years seen or implied e.g. 2500×0.928^2 Condone missing £
7	216 cm ²	3	Award I mark for a correct method to find either side of a smaller rectangle e.g. $3x = 18$ seen or implied. Award 2 nd mark for an attempt to find the area of any relevant rectangle Condone missing units cm ²

9	75	3	Award I mark for $175 \div (5+2)$ Award I mark for $3 \times "175 \div (5+2)"$
10	294 cm ≤ <i>l</i> < 295 cm	2	Award I mark for either end of the inequality correct OR both ends correct for rounding rather than truncation i.e. $293.5 \le l < 294.5$ seen
11	614.3 cm ³	3	Award I mark for a correct method to find the area of the cross-section of the solid seen or implied e.g. $(3.8 \times 11.2) + (5.1 \times 3.7)$ or 61.43 Award I mark for a correct method to find the volume i.e. "61.43" \times 10 Condone missing units
I2a	Boys Lowest score 28 Lower quartile 40 Median score 56 Upper quartile 62 Greatest score 72	3	Award I mark for correct plotting either the median or the lowest score. Award I mark for either LQ = 40 or greatest score = 72 seen or clearly indicated

14	Yes, with supporting working	3	Award I mark for a correct method to find the area of a square tile seen or implied e.g. 0.5×0.5 (= 0.25) Award I mark for a correct method to find the total area of 20 square tiles Award 3 rd mark must have conclusion and compare areas in the same units.
			Accept alternative methods e.g. $\sqrt{4.5 \div 20}$ to compare the side length of square tiles
15	400 N/m ²	2	Award I mark for a correct method seen or implied i.e. 5000 ÷ 12.5 Condone missing units
16	y = -2x + 20	4	Award I mark for a correct method to find the gradient of the line segment AB e.g. $\frac{-135}{7-3}$ (= -2) Award I mark forming the equation of the parallel line with their gradient of AB seen or implied e.g. $y = -2x + c$ Award I mark for correct use of (5, 10) substituted into their equation to find c Accept any equivalent form
16		4	parallel line with their gradient of AB seer implied e.g. $y = -2x + c$ Award I mark for correct use of (5, 10) substituted into their equation to find c Accept any equivalent form

17	y = sinx y = cosx y = tonx y = tonx	2	Award I mark one correct match
18	324.40 mm	3	Award I mark for a correct method using the sine rule seen or implied e.g. $\frac{AC}{\sin(96)} = \frac{168}{\sin(31)}$ or $\frac{AB}{\sin(53)} = \frac{168}{\sin(31)}$ Award I mark for a correct method to evaluate AC e.g. $\frac{168 \times \sin(96)}{\sin(31)}$ Condone missing units

19	e.g. 416 or 417 or 420		Award I mark for an attempt to compare
			proportions e.g. $\frac{50}{N} = \frac{12}{100}$ or equivalent
			Award I mark for a correct method seen to
		3	evaluate the population of rabbits e.g. $\frac{50 \times 100}{12}$
			Award final mark for a suitable integer estimate.
			Do not accept 416.6 or equivalent
	x < -10 or x > 1		Award I mark for a correct method to solve
			the quadratic e.g. $(x + 10)(x - 1) > 0$
20		3	Condone use of $=$ or missing > 0
20		0	Award 2^{na} mark for critical values found as -10
			and I
			Do not accept $-10 > x > 1$
21a	-155		Award I mark for a correct method to
			evaluate $g(6)$ seen or implied
		3	e.g. $g(6) = 2 - 7(6) (= -40)$
			Award I mark for a correct method to find
			f("g(6)") e.g. $4(-40) + 5$
216	$f^{-1}(x) = \frac{x-5}{4}$	2	Award I mark for a correct method to find
			inverse function e.g. $x = 4y - 5$
22a	3x - 13 + 4x - 10 = 180		Award I mark for forming a correct equation
	7x - 23 = 180		involving $\angle BAD$ and $\angle BCD$
	Opposite angles in a cyclic quadrilateral sum to 180°	2	Award \overline{I} mark for a correct reason given.
			Explanation must include words underlined or
			their equivalent.

22ь	$x = 29^{\circ}$ $\angle ADC = 98^{\circ}$ The <u>angle at the centre</u> is <u>twice</u> the <u>angle at the</u> <u>circumference</u> Reflex $\angle AOB = 196^{\circ}$ Obtuse $\angle AOB = 164^{\circ}$	4	Award I mark for x correctly evaluated. Award I mark for evaluating $\angle ADC$ Award I mark for evaluating obtuse $\angle AOB$ Award I mark for correct reasoning Explanation must include words underlined or their equivalent. Award full marks correct solution with complete workings with supporting reasoning
23a	(-4, 4)	I	
23b	(-4, -3)	I	
23c	(-5, 2)	I	
24	$c = \frac{3}{4}$	5	Award I mark for correct method to find at least one equation e.g. $a = kb^2$ or $c = \frac{k'}{\sqrt{a}}$ with values substituted. Award I mark for each correct equations with constants evaluated i.e. $a = 4b^2$ and $c = \frac{18}{\sqrt{a}}$ Award 4 th mark for a correct method to evaluate c using their equation in b and c Award final mark for correct value of c. Accept any equivalent form