Mark schemes

Q1.

(a)

	$1960-1977$	$1977-2003$	$2003-2015$	
trend in carbon dioxide concentration		increasing	increasing	1
trend in air temperature	decreasing	increasing	constant $/$ decreasing	1

allow synonyms e.g. level / goes up / goes down
(b) traps heat / energy or (long-wavelength / IR) radiation
do not accept light / UV
or
less loss of heat
allow stops (some) heat escaping do not accept stops all heat escaping
or
insulates
ignore greenhouse effect ignore reference to ozone layer
(c) Level 2: Some logically linked reasons are given. There may also be a simple judgement.

Level 1: Relevant points are made. They are not logically linked.

No relevant content

Indicative content

for the theory:

- (overall increased CO_{2} parallels) overall increased temperature (e.g. by $0.4\left({ }^{\circ} \mathrm{C}\right)$)
- $\quad \mathrm{CO}_{2}$ traps (long-wave) radiation / IR / heat

against the theory:

- in some years (e.g. 1960-1977) temperature falls (while CO_{2} is rising)
- many (large and small) erratic rises and falls in temperature
- overall correlation does not necessarily mean a causal link
- other (unknown) factors may be involved in temperature change
to access level 2 there must be evidence both for and against the theory and use of data from the graph
(d) burning of (fossil) fuels allow e.g. coal / oil / gas allow driving cars allow any activity which leads to burning fuels e.g. using central heating ignore power stations unqualified ignore burning / fires unqualified ignore deforestation
(e) photosynthesis
allow full description or full equation allow a symbol equation which is not balanced
(f) any two from:
- (some) plants grow faster / higher yield
- loss of habitat
- migration or change in distribution*
- extinction*
*if neither is given allow alters biodiversity for 1 mark
allow (in terms of extinction) death due to e.g. lack of water / food or increased disease ignore death unqualified
allow points made using examples

Q2.
(a) (i) insulin
accept glucagon (correct spelling only)
(ii) pancreas
accept phonetic spelling
allow pancrease
(b) (i) 11(.0)
accept in range 10.5-11 (.0)
(ii) any two from:
ignore numbers unless comparative

- high(er) concentration (of blood glucose) (anywhere / any time)
accept 115 not 88
139 not 99
- $\quad l a r g e(r)$ increase (in concentration after the drink)
accept increase by 24 not 11 / their b(i)
- fast(er) / steep(er) rise accept it takes 3 hours not $1 \frac{1}{4}$ hours to get back to original level accept it takes a long time to get back to normal
- slow(er) fall
(iii) any one from:
- insulin present / produced
accept glucagon not produced
- (used in) respiration
allow exercise
- taken into cells
allow converted to glycogen
allow taken into liver (cells) / muscle (cells)
allow produce / make energy

Q3.
(a) receptors detect / sense stimuli / change in surroundings or convert stimulus into an impulse ignore send impulses to brain / spinal cord
example of a receptor
allow any appropriate organ or part of an organ, eg eye / retina or named type of receptor eg light receptor
effectors allow / make response or convert an impulse to an action
ignore receive impulses from brain / spinal cord
(effector) muscle / gland
allow an example
ignore eg arm / leg
(b) (i) junction
allow idea of a (small) gap / space
do not allow if implication is that the neurones move
between neuron(e)s
allow named types of neurones
(ii) chemical
allow answers in terms of specific types of neurone
allow neurotransmitter / named neurotransmitter released
any one from:

- (chemical released) from one neurone ignore produced
- (chemical) passes (across synapse) to next neurone to stimulate / cause (electrical) impulse allow diffuses for passes (across)
(c) (i) skin
ignore hand / leg
(ii) 1.6 (cm per millisecond)
allow 2 if evidence of rounding up of 1.6
(iii) any two from:
ignore length of neurones
- synapses slow down transmission / impulse allow idea of movement of chemical being slower than electrical impulse
- fewer synapses (via brain)
allow one synapse compared to two or only one synapse
- (therefore) fewer delays
allow impulse travels more slowly in relay neurones

Q4.
(a) 2400 and 2280
or
500 and 380

120
an answer of 120 scores 2 marks
(b) respiration of glucose
(c) (more) sweating
ignore reference to vasodilation /
(because) exercise releases heat
or
need to cool the body
or
need to lose heat
or
need to maintain body temperature do not accept energy being produced
(d) more energy needed
do not accept energy production do not accept energy needed for respiration
(so) more (aerobic) respiration
(so) increased breathing (rate / depth) (to supply oxygen or remove carbon dioxide / water)
'more' does not need to be stated a second time to gain marking point 1 and marking point 2

Q5.
(a) methane is produced
ignore bad smell
which is a greenhouse gas / causes global warming
(b) $\quad(9.80 / 0.20=49$ therefore) $49: 1$
(c) horse (manure)
allow ecf from 11.2
closest to 25:1 (ratio)
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3-4 marks):

A description of how carbon is released from dead leaves and how carbon is taken up
by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1-2 marks):

Simple statements are made, but no attempt to link to explanations.

0 marks:

No relevant content.

Indicative content

statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide

explanations:

- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose
use of carbon in growth:
- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves
(e) any three from:
(storage conditions)
- (at) higher temperature / hotter
- (had) more oxygen
- (had) more water / moisture
- (contained) more microorganisms (that cause decay)
allow reference to bacteria / fungi / mould

Q6.
(a) there is an uneven distribution of dandelions
or
(more) representative / valid
or
avoid bias
or
more accurate / precise mean
ignore accurate / precise unqualified
ignore repeatability / reproducibility / reliability /
fair test
(b) (correct mean per $\mathrm{m}^{2}=$) 6 or 6.0
(correct field area $=$) $55000\left(\mathrm{~m}^{2}\right)$

```
mean \(\times\) area - e.g. 6(.0) \(\times 55000\)
allow incorrect calculated values for mean and /
    or field area
```

330000
allow correct calculation from previous calculation
3.3×10^{5}
allow calculated value in standard form
an answer of 3.3×10^{5} scores 5 marks
an answer of 330000 scores 4 marks
(c) Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- placing of quadrat
- large number of quadrats used
- how randomness achieved - e.g. table of random numbers or random number button on calculator or along transect
- quadrats placed at coordinates or regular intervals along transect
- in each of two areas of different light intensities or transect running through areas of different light intensity
- for each quadrat count number of dandelions
- for each quadrat measure light intensity
- compare data from different light intensity
to access level 3 the key ideas of using a large number of quadrats randomly, or along a transect, and counting the number of dandelions in areas of differing light intensity need to be given to produce a valid outcome
(d) any two from:
- temperature
allow heat
- water
allow moisture / rain
- (soil) pH
allow acidity
- minerals / ions
allow e.g. magnesium ions or nitrate allow salts / nutrients
- winds
- herbivores
allow trampling ignore carbon dioxide ignore space ignore competition unqualified do not accept oxygen

Q7.
(a)

	statement is true for		
	mitosis only	meiosis only	both mitosis and meiosis
all cells produced are genetically identical	\checkmark		
in humans, at the end of cell division each cell contains 23 chromosomes		\checkmark	
involves DNA replication			\checkmark

(b) any two from:
ignore references to one parent only

- many offspring produced
- takes less time
allow asexual is faster
- (more) energy efficient
- genetically identical offspring
- successful traits propagated / maintained / passed on (due to offspring being genetically identical)
- no transfer of gametes or seed dispersal
allow no vulnerable embryo stage allow no need for animals
- not wasteful of flowers / pollen / seeds
- colonisation of local area must imply local area
(c) genetic variation (in offspring)
(so) better adapted survive allow reference to natural selection or survival of the fittest
(and) colonise new areas by seed dispersal
or
can escape adverse event in original area (by living in new area) must imply new area
many offspring so higher probability some will survive
allow bluebell example described (max 3 if not bluebell)

Q8.
(a) to prevent water affecting the direction of root growth
(b) gravity acts evenly on all sides
allow cancel out the effect of gravity do not accept there is no gravity
(c) (mean) includes the (anomalous) result for seedling 4 allow (mean) includes the (anomalous) result which only grew 1 mm
(d) calculate (mean) from just seedlings 1,2,3 and 5 or repeat the investigation and recalculate (a new mean) allow omit seedling 4 from (mean) calculation

(e) uneven distribution of hormone in (root / seedling of) A allow reference to auxin allow more hormone at bottom do not accept more hormone at the top

```
even distribution of hormone in B
    allow B does not have an uneven distribution of hormone
```

(so) top grows fast(er) (than bottom) in (root / seedling of) A (and equal growth in B)

$$
\begin{aligned}
& \text { allow (more) cell elongation or cell division on top } \\
& \text { of A } \\
& \text { allow converse for lower surface }
\end{aligned}
$$

(f)

extra line for a hormone cancels mark for that hormone

Q9.
(a) 3.7
(b) 2
(c) (different combinations of alleles cause) many / 22 values allow continuous variation
or
in-between values
or
large range of values
or
there are not only two values
allow there are not only 3 values if 3 is given in part (b)
(d) different protein made
allow change in shape (of enzyme) or change in 3-D structure ignore denature
active site changed
so substrate does not fit / bind
allow description of substrate allow cannot form E-S complex ignore lock and key description
(e) produces (some) offspring with high-fat milk
or
not all offspring have low-fat milk
ignore reference to alleles
(f) takes less time (to obtain results)
or
more offspring at the same time
allow other sensible suggestion - e.g. allows screening or allow cow 7 to continue to produce eggs or avoid injury to cow 7 during mating or giving birth
(g) male gametes correct: d (and d)
female gametes correct: D and d
allow 1 mark if gametes are correct but gender not identified
correct derivation of offspring genotypes from given gametes
allow 2×2 or 2×1 derivation

Dd identified as low-fat and dd identified as high-fat in offspring
if DD offspring are produced, must also identify as low-fat
(h) find female with low(est) fat in milk and high(est) milk yield
allow choose from 7, 9, 12, 13 which has the highest yield
find male whose female offspring have high(est) milk yield and low(est) fat in milk
allow choose from 16 or 18 whose female offspring has the highest yield

or

find female with lowest fat in milk or cow 13 (1)*
*or
allow female with high(est) milk yield
find male whose female offspring have high(est) milk yield (1)*
*or
allow male whose female offspring have lowest fat in milk / male 16
cross the best (for both features) female with the best male
select best offspring (for both features) from each generation and repeat for several generations

