

Question	Answer	Marks	Notes and guidance
la	10 <i>g</i> + 1	2	Award I mark for at least one bracket expanded correctly e.g. $3g + 15$ or $7g - 14$ seen
lb	5x(y+3)	2	Award I mark for a correct partial factorisation e.g. $5(xy+3x)$ or $x(5y+15)$ OR $5x$ identified as the highest common factor and one term inside the bracket correct
2	£25.60	3	Award I mark for $96 \div 12 (= 8)$ Award I mark for "8" $\times 3.20$
3a	15	2	Award I mark for $10 - (-5)$ seen or implied
3b	23.75	2	Award I mark for $25 - (1.25)$ seen or implied
4a	3:4	2	Award I mark for partial simplification of 18 : 24 e.g. 9 : 12 or 6 : 8
4b	I : 0.75	I	

	£15 300		Award I mark for 18 000 $ imes$ 0.85 seen or
8 a		2	implied
			Condone missing £
	£21 000		Award I mark for 17 850 ÷ 0.85 seen or
8b		2	implied
		Condone missing £	
	h = 4		Award I mark for a correct use of formula for
9		3	area of a trapezium e.g. $\frac{1}{2}(13+7)h = 40$
			Award I mark for correct first step to solve
			e.g. $(13 + 7)h = 40$
	13.4 cm		Award I mark for a correct use of Pythagoras'
10			theorem
		3	Award I mark for correct rearrangement e.g.
			e.g. $\sqrt{18^2 - 12^2}$ seen or implied
			Accept 13.41 etc.
	$w = \sqrt[3]{2q + 14}$		Award I mark for a correct first step to
11		3	rearrange e.g. $q + 7 = \frac{w^3}{2}$ or $2q = w^3 - 14$
			Award 2^{nd} mark for w^3 correct isolated e.g.
			$2(q + 7) = w^3$ or $2q + 14 = w^3$
12	12	2	Award I mark for a correct using of the
			product rule for counting e.g. $I \times 3 \times 2 \times 2$
			seen or attempt to list combinations with no
			more than 2 omissions/errors

l 3a	$\frac{9t^6}{2}$	2	Award I mark for a correct evaluation of the numerator i.e. $18t^9$ OR either t^6 or $\frac{9}{2}$ correct
ІЗЬ	e.g. $(2x - 3)^2 \equiv (2x - 3)(2x - 3)$ $\equiv 4x^2 - 12x + 9$ which is not the same as $4x^2 - 9$	2	Award I mark for an attempt to expand with 3 out of 4 terms correct. Must have conclusion for 2^{nd} mark Condone use of = rather than \equiv Accept any correct alternative method e.g.
			 factorise 4x² - 9 ≡ (2x + 3)(2x - 3) and conclusion substituting a suitable value of x into both expressions and conclusion
l 3c	(7+2y)(7-2y)	2	Award I mark for one sign error
14	(£)8250	3	Award I mark identifying the ratio of Mr Trent : Mr Khan = 9 : 5 oe Award 2^{nd} mark for 23 100 shared in their ratio e.g. 23 100 ÷ (9 + 5) = 1650
15	$\begin{pmatrix} 16\\ -8 \end{pmatrix}$	2	Award I mark for either $\begin{pmatrix} 8 \\ -12 \end{pmatrix}$ or $\begin{pmatrix} 8 \\ 4 \end{pmatrix}$ seen or implied and attempt to add both their products

17	28.4°	4	Award I mark for a correct use of Pythagoras theorem to find the length of AC i.e. $\sqrt{20^2 + 15^2}$ (= 25 cm) Award I mark for a correct method seen to find the length of CF i.e. 15 tan(42°) or 13.5(06) seen or implied. Award I mark for a correct method seen to find \angle FAC i.e. tan ⁻¹ $\left(\frac{"13.5"}{"25"}\right)$ Award final mark for awrt 28.4
18a	$P_3 = 621 116$	2	Award I mark for a correct method to find the population of fish in the lake after one year seen or implied e.g. $P_1 = 1.02(600\ 000 - 5000) = 606\ 900$ Accept 621 117 or other (integer) rounding if correct method seen
I 8b	В	I	Accept any clear indication
l8c	77 868	2	Award I mark for correct method 100 000 × (0.92) ³ seen or implied or correct build up method Accept 77 869 or other (integer) rounding if correct method seen
19	e.g. $\angle AFG = \angle ABC = 62^{\circ}$ because corresponding angles are equal $\angle BAC = 47^{\circ}$ because angles in a triangle sum to 180° $x = 47^{\circ}$ (Alternate segment theorem)	4	Award I mark for indicating either $\angle ABC = 62^{\circ} \text{ or } \angle AGF = 71^{\circ}$ Award I mark for $\angle BAC = 47^{\circ}$ found Award I mark for all reasons stated correctly.

	n = 4		Award I mark for correct method to find
20		3	gradient e.g. $\frac{17-2}{p-1}$ seen
			Award 2 nd mark for attempt to solve $\frac{17-2}{p-1} = 5$
	1		Award I mark for forming an expression for
21	3	2	the shaded area as a proportion of the
			rectangle e.g. $\frac{x^2+4x}{3x(x+4)}$ and attempt to factorise
			the numerator
	$\frac{6}{n(n-1)}$		Award I mark for $\frac{3}{n}$ seen
22		3	Award 2 nd mark for $\frac{3}{n} \times \frac{2}{n-1}$
	x = 5, x = -2		Award I mark for substituting linear equation
23	y = 2, y = -5	4	into quadratic e.g. $(y + 3)^2 + y^2 = 29$
			or $x^2 + (x - 3)^2 = 29$
			Award 2 nd mark for simplifying and rearranging
			their quadratic to solvable form
			e.g. $y^2 + 3y - 10 = 0$ or $x^2 - 3x - 10 = 0$
			Award 3 rd mark for any correct method to
			solve their quadratic