Year II Practice Paper 3H Calculator Mark Scheme

Question	Answer	Marks	Notes and guidance
1 a	$10 g+1$	2	Award I mark for at least one bracket expanded correctly e.g. $3 g+15$ or $7 g-14$ seen
Ib	$5 x(y+3)$	2	Award I mark for a correct partial factorisation e.g. $5(x y+3 x)$ or $x(5 y+15)$ OR $5 x$ identified as the highest common factor and one term inside the bracket correct
2	$£ 25.60$	3	Award I mark for $96 \div 12(=8)$ Award I mark for " 8 " $\times 3.20$
3a	15	2	Award I mark for $10-(-5)$ seen or implied
3b	23.75	2	Award I mark for 25 -(1.25) seen or implied
4a	3: 4	2	Award I mark for partial simplification of I8: 24 e.g. $9: 12$ or $6: 8$
4b	I : 0.75	I	

Year II Practice Paper 3H Calculator Mark Scheme

5		2	Award I mark for points plotted at correct midpoints of intervals with no joining line segments OR correct frequency polygon with one error
6a	$9 p-12$	1	Accept 3(3p-4)
6b	17 (cm)	2	Award I mark for forming and attempting to solve an equation in p e.g. $9 p-12=141$
7a	$22 \mathrm{~m} / \mathrm{s}$	2	Award I mark for $330 \div 15$ seen or implied
7b	$79.2 \mathrm{~km} / \mathrm{h}$	2	Award I mark for $22 \times \frac{3600}{1000}$ seen or implied. Follow through their answer to part a for I or 2 marks
7c	$8.73 \mathrm{~m} / \mathrm{s}$	2	Award I mark for $100 \div 11.45$ seen or implied Condone use of 99.5 or 100.5 for 100 for first mark Accept awrt 8.73

Year II Practice Paper 3H Calculator Mark Scheme

8a	£I5 300	2	Award I mark for 18000×0.85 seen or implied Condone missing $£$
8b	£21 000	2	Award I mark for $17850 \div 0.85$ seen or implied Condone missing $£$
9	$h=4$	3	Award I mark for a correct use of formula for area of a trapezium e.g. $\frac{1}{2}(13+7) h=40$ Award I mark for correct first step to solve e.g. $(13+7) h=40$
10	13.4 cm	3	Award I mark for a correct use of Pythagoras' theorem Award I mark for correct rearrangement e.g. e.g. $\sqrt{18^{2}-12^{2}}$ seen or implied Accept 13.41... etc.
11	$w=\sqrt[3]{2 q+14}$	3	Award I mark for a correct first step to rearrange e.g. $q+7=\frac{w^{3}}{2}$ or $2 q=w^{3}-14$ Award $2^{\text {nd }}$ mark for w^{3} correct isolated e.g. $2(q+7)=w^{3}$ or $2 q+14=w^{3}$
12	12	2	Award I mark for a correct using of the product rule for counting e.g. I $\times 3 \times 2 \times 2$ seen or attempt to list combinations with no more than 2 omissions/errors

Year II Practice Paper 3H Calculator Mark Scheme

13a	$\frac{9 t^{6}}{2}$	2	Award I mark for a correct evaluation of the numerator i.e. $18 t^{9}$ OR either t^{6} or $\frac{9}{2}$ correct
I3b	$\begin{aligned} & \text { e.g. }(2 x-3)^{2} \equiv(2 x-3)(2 x-3) \\ & \equiv 4 x^{2}-12 x+9 \text { which is not the same as } 4 x^{2}-9 \end{aligned}$	2	Award I mark for an attempt to expand with 3 out of 4 terms correct. Must have conclusion for $2^{\text {nd }}$ mark Condone use of $=$ rather than \equiv Accept any correct alternative method e.g. - factorise $4 x^{2}-9 \equiv(2 x+3)(2 x-3)$ and conclusion - substituting a suitable value of x into both expressions and conclusion
13c	$(7+2 y)(7-2 y)$	2	Award I mark for one sign error
14	(£) 8250	3	Award I mark identifying the ratio of Mr Trent: Mr Khan = 9:5 oe Award $2^{\text {nd }}$ mark for 23100 shared in their ratio e.g. $23100 \div(9+5)=1650$
15	$\binom{16}{-8}$	2	Award I mark for either $\binom{8}{-12}$ or $\binom{8}{4}$ seen or implied and attempt to add both their products

Year II Practice Paper 3H Calculator Mark Scheme

17	$28.4{ }^{\circ}$	4	Award I mark for a correct use of Pythagoras theorem to find the length of AC i.e. $\sqrt{20^{2}+15^{2}}(=25 \mathrm{~cm})$ Award I mark for a correct method seen to find the length of CF i.e. $15 \tan \left(42^{\circ}\right)$ or 13.5(06...) seen or implied. Award I mark for a correct method seen to find \angle FAC i.e. $\tan ^{-1}\left(\frac{13.5^{\prime \prime}}{{ }^{25} 5^{\prime}}\right)$ Award final mark for awrt 28.4
18a	$P_{3}=621116$	2	Award I mark for a correct method to find the population of fish in the lake after one year seen or implied $\text { e.g. } P_{1}=1.02(600000-5000)=606900$ Accept 621 117 or other (integer) rounding if correct method seen
18b	B	1	Accept any clear indication
18c	77868	2	Award I mark for correct method $100000 \times$ $(0.92)^{3}$ seen or implied or correct build up method Accept 77869 or other (integer) rounding if correct method seen
19	e.g. $\angle \mathrm{AFG}=\angle \mathrm{ABC}=62^{\circ}$ because corresponding angles are equal $\angle B A C=47^{\circ}$ because angles in a triangle sum to 180° $x=47^{\circ}$ (Alternate segment theorem)	4	Award I mark for indicating either $\angle A B C=62^{\circ}$ or $\angle A G F=71^{\circ}$ Award I mark for $\angle B A C=47^{\circ}$ found Award I mark for all reasons stated correctly.

Year II Practice Paper 3H Calculator Mark Scheme

20	$p=4$	3	Award I mark for correct method to find gradient e.g. $\frac{17-2}{p-1}$ seen Award $2^{\text {nd }}$ mark for attempt to solve $\frac{17-2}{p-1}=5$
21	$\frac{1}{3}$	2	Award I mark for forming an expression for the shaded area as a proportion of the rectangle e.g. $\frac{x^{2}+4 x}{3 x(x+4)}$ and attempt to factorise the numerator
22	$\frac{6}{n(n-1)}$	3	Award I mark for $\frac{3}{n}$ seen Award $2^{\text {nd }}$ mark for $\frac{3}{n} \times \frac{2}{n-1}$
23	$x=5, x=-2$ $y=2, y=-5$	4Award I mark for substituting linear equation into quadratic e.g. $(y+3)^{2}+y^{2}=29$ or $x^{2}+(x-3)^{2}=29$ Award $2^{\text {nd }}$ mark for simplifying and rearranging their quadratic to solvable form e.g. $y^{2}+3 y-10=0$ or $x^{2}-3 x-10=0$ Award 3 $3^{\text {rd }}$ mark for any correct method to solve their quadratic	

