Mark schemes

1. (a) uniform acceleration
allow constant / steady acceleration
allow velocity / speed increasing at a constant rate
ignore reference to direction
acceleration scores 1 mark
or
velocity / speed is increasing scores 1 mark
do not accept acceleration increases
(b) up(wards)
(c) a group of objects that interact
(d) velocity just after bounce is less than just before bounce
allow velocity is less / decreases
velocity decreases to zero - on its own scores zero
or
the height at the top of the bounce is less than the height from which it was dropped
so the ball has lost energy
correct reference to (loss of) ke or (reduced) gpe
total energy of ball and Earth / ground is constant
allow 'a system’ for ball and Earth
allow energy is conserved
2. (a) wavelength
this answer only
(b) (extremely) hot and dense ignore very small
(c) (directly) proportional
allow a correct description of direct proportionality ignore positive correlation
(d) 6×10^{24}
(e) the furthest galaxies are moving the fastest
(this suggests) the universe is expanding (from a very small region)
(f) expanding at (an ever) greater rate allow expanding faster
(g) any one from:

- detects false claims
allow provides credibility
- detects inaccurate data allow detects mistakes
- detects bias allow removes bias
- verifies new data allow checks validity
- provides a consensus (of opinion) ignore shows data is accurate ignore proves a theory

3. (a) P-waves are longitudinal and

S-waves are transverse
(c) wave speed $=$ frequency \times wavelength

$$
\text { allow } v=f \lambda
$$

(d) $7200=0.4 \times$ wavelength

$$
\text { wavelength }=\frac{7200}{0.4}
$$

```
wavelength = 18000 (m)
    allow up to full marks for ecf using their answer to part
    (b)
```

 a method shown as
 \(7200 \times 2.5=18000\)
 scores 0 marks
 an answer 18000 scores 3 marks
 (e) because S-waves cannot travel through a liquid
and S-waves do not travel through the (outer) core allow some (seismic) waves cannot travel through a liquid and do not go through the core for 1 mark
(f) magnetic field around the coil changes
or
the magnetic field (lines) cut by the coil
allow the generator effect
(g) because the magnet changes direction
(h) stationary
(i) any two from:

- stronger magnetic field
allow stronger magnet allow heavier magnet bigger magnet is insufficient
- more turns on the coil bigger coil is insufficient do not accept more coils of wire
- turns pushed closer together
- spring with a lower spring constant
allow less stiff spring
allow weaker spring
do not accept add an iron core

4. (a) all heights drawn the same as tube 1 judge by eye
(b) increasing depth increases the height / mass / volume (of the water column) above the swimmer
allow more water above (the swimmer)
more water is insufficient
increasing the weight / force (of water) acting on the swimmer
1
(c) increase in depth $=1.2(\mathrm{~m})$
(Δ) $p=1.2 \times 1030 \times 9.8$
allow either 0.50 or 1.70 for 1.2
$(\Delta) p=12112.8$
allow a correctly rounded answer
allow a correct calculation using either 0.50 or 1.70
pascals or Pa
do not accept pa
allow $\mathrm{N} / \mathrm{m}^{2}$
an answer of 12112.8 scores 3 marks
5. (a) random
(b) accept any practical suggestion that could cause a range of values e.g. misjudging the centre of the ray e.g. not replacing mirror / ray box in the same position
measuring the angle incorrectly is insufficient moving the mirror / ray box is insufficient
(c) range $=10$
or
mean of 51 calculated
$5\left({ }^{\circ}\right)$
an answer of $5\left({ }^{\circ}\right)$ scores 2 marks
(d) within experimental accuracy the angle of incidence and the angle of reflection are the same
allow the angle of incidence is nearly the same as the angle of reflection
or
the angle of reflection is usually different to the angle of incidence
allow only a few of the values are the same / similar allow the idea of a range of values
relevant use of data e.g.
at $20^{\circ} / 30^{\circ} / 40^{\circ}$ there is at least one measurement of angle of reflection that is exactly the same
or
at 50° there are big differences
allow 50° includes anomalous results
an answer in terms of calculated mean(s) may score
both marks
e.g. mean calculated for one or more angle of reflection (1) conclusion correctly stating angle $i=/ \neq$ angle r (1)
(e) results could be collected for angles (of incidence) not yet measured
allow a stated angle of incidence e.g. 10° or 60°
changing the mirror is insufficient
ignore repeat the measurements
(f) replace the mirror with an irregular reflecting surface allow use an irregular reflecting surface replace mirror with paper is insufficient do not accept use a glass block
6. (a) arrow of equal size pointing vertically upwards judged by eye ignore horizontal arrows if equal and opposite horizontal arrows of unequal length negates this mark
labelled 'upthrust'
ignore buoyancy
ignore 25 kN
(b) weight $=25 \mathrm{kN}$
allow 24 to 25 kN inclusive
$25000=$ mass $\times 9.8$
or
$\mathrm{m}=\frac{25000}{9.8}$
allow their W correctly converted and substituted
$\mathrm{m}=2551 \mathrm{~kg}$
allow correctly calculated value using their converted W allow a value correctly calculated with W in $k N$
$\mathrm{m}=2600 \mathrm{~kg}$
allow a calculated answer correctly rounded to 2 significant figures
an answer of 2600 scores 4 marks
(c) Newton's 3rd law (of motion)
(d) vertical force (50 N) drawn and
horizontal force (150 N) drawn to the same scale
resultant tension force in the correct direction
shown by an arrowhead
value of the tension force in the range $156 \mathrm{~N}-160 \mathrm{~N}$
allow a calculated value of 158
value of direction in the range $18^{\circ}-20^{\circ}$ (from the horizontal)
allow 70° to 72° (from the vertical)
allow a bearing in the range 288 to 290
[11]
7. (a) any one from:

- too few turns / coils on the secondary
allow number of turns / coils on the primary was increased
- p.d. across the primary was reduced ignore human error
(b) the p.d. (across the secondary) goes above 2 V
allow p.d. across secondary is higher than p.d. across primary after 20 turns
(c) it increases (until the nails reach a constant temperature)
(d) $\frac{640}{4}=\frac{V_{\rho}}{1.75}$
$V_{p}=\frac{640 \times 1.75}{4}$
$\mathrm{V}_{\mathrm{p}}=280(\mathrm{~V})$
$280 \times I_{p}=336$
allow their calculated
$V_{p} \times I_{p}=336$
$I_{p}=1.2(\mathrm{~A})$
allow an answer that is consistent with their calculated value of V_{p}
or
$336=I_{s} \times 1.75(1)$
$I_{s}=\frac{336}{1.75}$ (1)
$I_{s}=192(A)(1)$
$I_{p}=192 \times \frac{4}{640}(1$

> allow
$I_{p}=$ their calculated $I_{s} \times \frac{4}{640}$
$\mathrm{I}_{\mathrm{p}}=1.2(\mathrm{~A})(1)$
allow an answer that is consistent with their calculated value of I_{s}
an answer of 1.2 (A) scores 5 marks
8. (a) (force of) gravity causes the satellite to accelerate (towards the Earth) allow satellite is (constantly) accelerating
the acceleration causes a change in direction
acceleration causes a change in speed negates this mark point
velocity changes because direction changes
(b) length of orbit taken from graph $=42100(\mathrm{~km})$
$42100=7.73 \times$ time
or
time $=\frac{42100}{7.73}$
allow
their distance $=7.73 \times$ time
time (1 orbit) $=5446(\mathrm{~s})$
allow a value consistent with their distance
number of orbits $=\left(\frac{24 \times 3600}{5446}\right)$
$=15.86$
allow $\left(\frac{24}{1.51}\right)=15.86$
allow a value consistent with their distance
number of orbits = 15
allow a value consistent with their distance an answer of 16 scores 4 marks
or
length of orbit taken from graph $=42100(\mathrm{~km})(1)$
$7.73=\frac{\text { distance }}{24 \times 3600}(1)$
distance $=667872(\mathrm{~km})(1)$
number of orbits $=\left(\frac{667872}{42100}\right)$
$=15.86(1)$
allow a value consistent with their two distances
number of orbits = 15 (1)
allow a value consistent with their two distances up to full marks can be awarded for a method calculating velocity in km / h and time in hours an answer of 15 scores 5 marks
(c) the predicted data is very close to the actual data
so provides evidence that the equation is true / correct / works / accurate allow proves for provides evidence
9. (a) it is harder to judge where the centre of a wider ray is
causing a larger uncertainty (in the measurements)
allow increasing random errors (in the measurements)
(b) line of best fit drawn and extrapolated to 80 degrees

41 (degrees) allow 40 to 43 (degrees)

1
(c) Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content:

- place a glass block on a piece of paper
- draw around the glass block
- use the ray box to shine a ray of light through the glass block
- mark the ray of light entering the glass block
- mark the ray of light emerging from the glass block
- join the points to show the path of the complete ray through the block
- and draw a normal line at 90 degrees to the surface
- use a protractor to measure the angle of incidence
- use a protractor to measure the angle of refraction
- use a ray box to shine a ray of light at a range of different angles (of incidence)
- increase the angle of incidence in 10 degree intervals
- from an angle of incidence of 10 degrees to an angle of incidence of 70 degrees.
allow use of optical pins instead of a ray box
(d) $\frac{(28+25+22)}{3}=25$

3 (degrees)
allow alternative method
$28-22=6$ (1)

$$
=3 \text { (degrees) (1) }
$$

10.

(a) at least three circles drawn
clockwise arrows on circles
allow 1 mark for one or two circles with clockwise arrows
(b) 4×10^{-6}
(c) the sides of the coil (parallel to the magnet) experience a force (in opposite directions) allow the current creates a magnetic field ignore Fleming's Left Hand Rule
the forces cause moments that act in the same (clockwise / anticlockwise) direction or
the moments cause the coil to rotate (clockwise / anticlockwise)
allow the magnetic fields interact to create a pair of forces (acting in opposite directions)
or
allow the magnetic fields interact causing the coil to rotate
(each half-revolution) the two halves of the (rotating) commutator swap from one (carbon) brush to the other
(each half-revolution) the commutator reverses the current (in the coil)
or
keeping the forces in the same direction (keeping the coil rotating)
allow keeps the current in the same direction relative to the (permanent) magnetic field

