Mark schemes

1.	(a)	electrostatic		
••			1	
		gravitational	1	
	(b)	D		
			1	
	(c)	bring two unlike poles close together		
		allow north and south poles		
		allow opposite poles		
			1	
		bring two like poles close together		
		allow two north / south poles		
		allow N for north and S for south	1	
			•	
	(d)	induced magnetism	1	
	(-)	all A called a succeeding labelland a cardle and a cardle	•	
	(e)	all 4 poles correctly labelled north and south allow N for north and S for south		
		allow I mark for 2 or 3 correctly labelled poles		
			2	
				[8]
2.	(a)	it is the same size as the downward force		
2.			1	
	(b)	weight is a vector		
			1	
	(c)	centre of mass		
			1	
	(d)			
		an answer of 441 (N) scores 2 marks		
		$W = 45 \times 9.8$		
			1	
		W = 441 (N)		
		allow 440 (N)		
			1	

	(e)	judgement.	3–4	
		Level 1: Facts, events or processes are identified and simply stated but their	3 4	
		relevance is not clear.	1-2	
		No relevant content Indicative content		
		as height changes gravitational potential energy changes		
		gravitational potential energy decreases when moving to the lower bar		
		as speed changes kinetic energy changes		
		kinetic energy increases when moving to the lower bar		
		 transfer from gravitational potential energy to kinetic energy as height decreases 		
		the sum of the kinetic energy and gravitational potential energy is constant		
	(f)	reduces the force exerted		
		ignore impact		
			1	
		the risk of injury to gymnast is reduced		
		allow so the gymnast does not get injured	1	
				[11]
3.	(a)	there is a resultant force on the ball		
J.			1	
	(b)	an answer of 2.75 scores 2 marks		
		$s = 11 \times 0.25$		
			1	
		s = 2.75 (m)		
		allow 2.8 (m)	1	

	(C)	75 100 × 30.0		
		allow any correct method of determining 75% of 30	1	
		22.5 (cm)	1	
		(25.1 > 22.5) therefore the ball can be used	1	
		this mark can only be awarded if a supporting calculation has been done		
		allow any correct supported conclusion		
		allow a conclusion consistent with an incorrect percentage calculation		
		OR		
		$\frac{25.1}{30.0} \times 100 (1)$		
		84 % (1)		
		(84% > 75%) therefore the ball can be used (1)		
		this mark can only be awarded if a supporting calculation has been done		
		allow any correct supported conclusion		
		allow a conclusion consistent with an incorrect percentage calculation		
			1	
	(d)	the smaller ball has a smaller area		
			1	
		(so) air resistance is less (on the smaller ball)	1	
			[8]	l
	(a)	(thinking distance) will double		
4.	(ω)	(aminary distance) will deable	1	
		any correct pair of points from graph eg (200,6) and (400,12)		
		allow graph shows direct proportionality (after 200 ms)		
		allow 1 mark for thinking distance increases with supporting data.		
			1	
	(b)	(most) people cannot react any quicker than 200 ms		
			1	
	(c)	there is variation in the measurements		
		allow the data is not very precise		
		allow lots of random error		
		ignore references to accuracy / reliability / average	1	

(d)	(258+265+302+248+327) / 5	
	an answer of 280 gains 2 marks	
		1
	280 (ms)	4
		1
(e)	8.4 (m)	
	allow 7.9 (m) to 8.9 (m)	
	allow ecf from part (d)	1
(f)	any two from:	
	(material of) road surface	
	condition of the tyres	
	speed of the car wet / inv read ourface.	
	wet / icy road surfacegradient of road	
	mass / weight of the car	
	Ignore any reference to brakes	
		2
(g)	work done = force × distance (along the line of action of the force)	
	allow $W = F s$	
	allow any correct re-arrangement	1
<i>(</i> ,)		1
(h)	an answer of 450 000 scores 3 marks	
	F = 6000 N	
		1
	$W = 6000 \times 75$	
	allow a correct substitution using an incorrectly / not converted	
	value of F	
		1
	$W = 450\ 000\ (J)$	
	allow a correct calculation using an incorrectly / not converted value of F	
	Converted value of F	1
		[13]
(a)	velocity	
(-)		1
	frequency	
		1
	wavelength	
		1

5.

(b) so people are not exposed to (as much) gamma radiation allow less gamma radiation reaches the Earth's surface

1

because gamma radiation can damage human tissue

allow increases the risk of cancer or (cell) mutation

allow gamma rays are ionising

ignore any reference to temperature / heating of the atmosphere

1

(c) (microwaves) are used in (satellite) communications

ignore any reference to temperature / heating of the atmosphere

1

(d) can cause skin cancer / premature ageing

allow sunburn

allow eye / skin damage

cancer on its own is insufficient

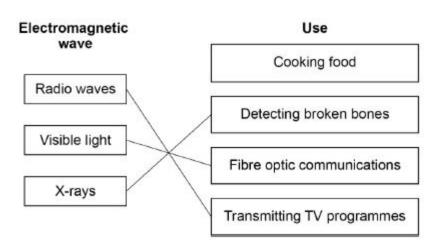
1

(e) risk from UV radiation is highest in July / summer allow any sensible comparison of named months / seasons

1

1

two correct readings from the bar chart which support their comparison


if no other mark scored, two correct readings from the graph scores

1 mark

[9]

6.

(a)

additional line from a box on the left negates the mark for that box

3

(b)

Variable	Independent	Dependent	Control
Distance between infrared detector and surface of cube			
Starting temperature of water inside cube			1
Temperature measured by infrared detector		√	
Type of surface	√		

do not accept more than one tick per row

(c) 0.5 °C

1

1

1

1

- (d) any **one** from:
 - 26(.0 °C to) 69(.0 °C)
 - 69(.0 °C to) 26(.0 °C) ignore 43(.0 °C)

1

(e) 3 bars correctly plotted

allow a tolerance of +/- ½ of a small square allow any width, bars touching or not allow 1 mark for 2 bars correctly plotted

2

3 bars correctly labelled

1

- (f) any **one** from:
 - matt black is the best emitter / radiator

allow silver is a poor emitter / radiator

shiny silver is the worst emitter / radiator allow black is a good emitter / radiator

allow an answer in terms of highest / lowest temperature

allow matt white and shiny black are (almost) the same at emitting / radiating

ignore any reference to absorption / reflection

1

(g) $v = f \times \lambda$

1

	(h)	$300\ 000\ 000 = f \times 500$	1
		300,000,000	1
		$f = \frac{300\ 000\ 000}{500}$	
		500	1
		f = 600 000	
			1
		hertz / Hz	1
			1 [17]
7	(a)		
7 .	` '	an answer of 7 (s) gains 2 marks	
		(4 - 0) + (10 - 7)	
		or 4 + 3	
		or 10 – 3	1
		7 (s)	
		<i>(S)</i>	1
	(b)		
	(-)	an answer of 0.2 (m/s²) gains 2 marks	
		gradient = $\frac{0-2}{24-14}$	
		24–14	
		allow readings from any two points correctly substituted	1
			1
		$(-) 0.2 \text{ (m/s}^2)$	
		allow correct use of $a = \frac{\Delta v}{t}$	
			1
	(c)	(there are no wires) to get tangled / disconnected	
		allow easier to move arms	
		allow wires are inconvenient	
		allow easier to transfer data	1
	(4)	wave anad - fraguancy y wavelength	•
	(d)	wave speed = frequency × wavelength allow $v = f \lambda$	
		allow any correct re-arrangement	1

(e) $an\ answer\ of\ 0.125\ (m)\ or\ 0.13\ (m)\ scores\ 3\ marks$ $300\ 000\ 000\ = 2\ 400\ 000\ 000 \times \lambda$ 1 $\lambda = \frac{300\ 000\ 000}{2\ 400\ 000\ 000}$ 1 $\lambda = 0.125\ (m)$ $allow\ \lambda = 0.13\ (m)$ 1 (f) range is far enough (for most uses) 1 power is not too great so the battery will not drain quickly $allow\ power\ not\ too\ great\ so\ the\ phone\ will\ not\ overheat$

allow the range per milliwatt is greatest or 4 metres

Helena Romanes School and Sixth Form Centre

1

[11]