

Question	Answer	Marks	Notes and guidance
la	a	I	Allow Ia
١b	35 <i>ab</i>	I	
2	4	3	Award I mark for either 30% of 80 (= 24) or $\frac{4}{7}$ of 35 (= 20) correctly evaluated Award 2 nd mark for both values evaluated
3	<i>n</i> > 2.5	2	Award I mark for a correct first step to solve seen or implied e.g. $4n > 10$ Accept equivalent answers e.g. $n > \frac{5}{2}$
4	e.g. 2 × 2 × 2 × 2 × 3 × 5	2	Award I mark for a process to find prime factors of 240 i.e. a completed prime factor tree Accept equivalent answers
5a	43 100	I	
5b	6.52×10^{-3}	I	
5с	3.2 × 10 ⁶	2	Award I mark for a correct method seen or implied e.g. $(9.6 \div 3) \times (10^4 \div 10^{-2})$ or $96000 \div 0.03$
6	4	Ι	

7a								Award I mark for writing each fraction as an equivalent with a common denominator i.e. $\frac{25}{40} - \frac{12}{40}$ Accept equivalent fractions not simplified as a final answer e.g. $\frac{26}{80}$
7b	$1\frac{2}{9}$						2	Award I mark for $\frac{11}{5} \times \frac{5}{9}$ seen or implied
8	13							Award I mark for $780 \div 60$ seen or implied.
•	Colour	red	green	blue	yellow	purple		Award I mark for method to find
9	Probability	0.24	0.17	0.17	0.17	0.25	2	P(G or B or Y) seen or implied e.g. $I - 0.49$
l Oa	1:2:6							Award I mark for forming an equivalent ratio not its simplest form e.g. 15 : 30 : 180
I Ob	£100							Award I mark for 450 ÷ their 9 seen or implied
11	0.16						2	Award 1 mark for a correct method seen i.e. 0.4×0.4 or 0.4^2
I 2a	х –3	-2	-1	0 1	2	3		Award I mark for 3 correct values
	y I	-3	-5 -	-5 —3		7	2	
	· · · ·		•		•	·		

I 6b	c. 10	2	Award I mark for Upper and Lower Quartile values seen or implied from their cf graph e.g. 27.5 – 17.5
I7a	108	2	Award I mark for a correct method seen or implied e.g. $2 \times [(3 \times 4) + (3 \times 6) \times (4 \times 6)]$
l 7b	e.g. $\sqrt{3^2 + 4^2 + 6^2} = \sqrt{9 + 16 + 36} = \sqrt{61}$	2	Award I mark for a correct use of Pythagoras' theorem to find longest diagonal; could be as shown or applied twice e.g. $\sqrt{3^2 + 4^2}$ and then $\sqrt{5^2 + 6^2}$
18	81 kg	2	Award 1 mark for subtracting 150 from their 80×12 (= 960) seen or implied
19	$x^3 + 5x^2 - 2x - 24$	3	Award I mark for expanding and pair of the brackets correctly e.g. $x^2 + 7x + 12$ Award I mark for multiplying their quadratic by their remaining bracket seen or implied
20a	<u> </u> 25	I	
20ь	4	2	Award I mark for $(\sqrt[3]{8})^2$ or $\sqrt[3]{8^2}$ seen or implied
20c	4 <u>3</u> 90	2	Award 1 mark for a correct method seen e.g. finding $10x$, $100x$, subtracting and dividing
20d	$ \begin{pmatrix} \sqrt{50} + \sqrt{2} \end{pmatrix} (\sqrt{50} + \sqrt{2}) = 50 + 10 + 10 + 2 = 72 \\ \text{OR} \\ (\sqrt{50} + \sqrt{2})^2 = (5\sqrt{2} + \sqrt{2})^2 = (6\sqrt{2})^2 = 72 $	2	Award I mark for a correct use of $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ seen or implied.

21a	$y = \frac{16}{\sqrt{x}}$	2	Award I mark for forming a correct equation to show inverse proportionality of y and \sqrt{x} in terms of 'k' (e.g. $y\sqrt{x} = k$ or $y = \frac{k}{\sqrt{x}}$) and substituting in given values of x and y
21b	64	2	Award I mark for deducing $\sqrt{x} = 8$ or correct substitution of $y = 2$ into their equation of the form $y = \frac{k}{\sqrt{x}}$
22	Trapezium	I	
23	$y = -\frac{3x}{4} + \frac{25}{4}$	4	Award I mark for finding the gradient of OP $\left(=\frac{4}{3}\right)$ Award I mark for finding the gradient of the tangent to the circle at P $\left(=-\frac{3}{4}\right)$ i.e. negative reciprocal of their gradient of OP Award I mark for a correct process to obtain correct equation e.g. substituting (3, 4) into y = mx + c using their gradient of the tangent Accept answer in any equivalent form.
24	c. –2.5	2	Award I mark for a correct method seen or implied on the diagram to find the gradient of the tangent to the curve at $(-1, 3)$
25	$\frac{x+6}{2x-3}$	3	Award I mark for a correct factorisation of the numerator e.g. $(x + 6)(x - 2)$ Award I mark for a correct factorisation of the denominator e.g. $(2x - 3)(x - 2)$

26	3.6 km	3	Award I mark for a correct method to find the area of the trapezium Award I mark for 3600 m seen Condone missing units
27	3π – 9	4	Award I mark for a correct method to find the area of sector AOB e.g. $\frac{1}{12} \times \pi \times 6^2$ (= 3π) Award I mark for sin(30°) = $\frac{1}{2}$ seen or implied Award I mark for a correct method to find the area of triangle AOB e.g. $\frac{1}{2} \times 6 \times 6 \times \frac{1}{2}$ (= 9)