Year II Higher Non-Calculator Practise Paper I Mark Scheme

Question	Answer	Marks	Notes and guidance
la	a	I	Allow Ia
Ib	$35 a b$	1	
2	4	3	Award I mark for either 30% of $80(=24)$ or $\frac{4}{7}$ of 35 ($=20$) correctly evaluated Award $2^{\text {nd }}$ mark for both values evaluated
3	$n>2.5$	2	Award I mark for a correct first step to solve seen or implied e.g. $4 n>10$ Accept equivalent answers e.g. $n>\frac{5}{2}$
4	e.g. $2 \times 2 \times 2 \times 2 \times 3 \times 5$	2	Award I mark for a process to find prime factors of 240 i.e. a completed prime factor tree Accept equivalent answers
5a	43100	1	
5b	6.52×10^{-3}	1	
5c	3.2×10^{6}	2	Award I mark for a correct method seen or implied e.g. $(9.6 \div 3) \times\left(10^{4} \div 10^{-2}\right)$ or $96000 \div 0.03$
6	4	1	

Year II Higher Non-Calculator Practise Paper I Mark Scheme

7a	$\frac{13}{40}$								2	Award I mark for writing each fraction as an equivalent with a common denominator i.e. $\frac{25}{40}-\frac{12}{40}$ Accept equivalent fractions not simplified as a final answer e.g. $\frac{26}{80}$
7b	$1 \frac{2}{9}$								2	Award I mark for $\frac{11}{5} \times \frac{5}{9}$ seen or implied
8	13								2	Award I mark for $780 \div 60$ seen or implied.
9			${ }^{\text {red }}$	0.		blue	yelow 0.17	Purple	2	Award I mark for method to find $\mathrm{P}(\mathrm{G}$ or B or Y$)$ seen or implied e.g. I -0.49
10a	1:2:6								2	Award I mark for forming an equivalent ratio not its simplest form e.g. $15: 30: 180$
10b	£100								2	Award I mark for $450 \div$ their 9 seen or implied
11	0.16								2	Award I mark for a correct method seen i.e. 0.4×0.4 or 0.4^{2}
12a	x	-3	-2	-1	0	1	2	3	2	Award I mark for 3 correct values
	y	1	-3	-5	-5	-3	1	7		

Year II Higher Non-Calculator Practise Paper I Mark Scheme

I2b		2	Award I mark for all points plotted from the table but not joined or all points from their table correctly plotted and joined.
13	90°	3	Award I mark for stating the total of the interior angles of a pentagon i.e. 540° Award I mark for a correct method to find the size of the other two angles e.g. $\frac{540-(115+120+125)}{2}$

Year II Higher Non-Calculator Practise Paper I Mark Scheme

Year II Higher Non-Calculator Practise Paper I Mark Scheme

16b	c. 10	2	Award I mark for Upper and Lower Quartile values seen or implied from their of graph e.g. 27.5 - I7.5
17a	108	2	Award I mark for a correct method seen or implied e.g. $2 \times[(3 \times 4)+(3 \times 6) \times(4 \times 6)]$
17b	e.g. $\sqrt{3^{2}+4^{2}+6^{2}}=\sqrt{9+16+36}=\sqrt{61}$	2	Award I mark for a correct use of Pythagoras' theorem to find longest diagonal; could be as shown or applied twice e.g. $\sqrt{3^{2}+4^{2}}$ and then $\sqrt{5^{2}+6^{2}}$
18	81 kg	2	Award I mark for subtracting 150 from their $80 \times 12(=960)$ seen or implied
19	$x^{3}+5 x^{2}-2 x-24$	3	Award I mark for expanding and pair of the brackets correctly e.g. $x^{2}+7 x+12$ Award I mark for multiplying their quadratic by their remaining bracket seen or implied
20a	$\frac{1}{25}$	I	
20b	4	2	Award I mark for $(\sqrt[3]{8})^{2}$ or $\sqrt[3]{8^{2}}$ seen or implied
20c	$\frac{43}{90}$	2	Award I mark for a correct method seen e.g. finding $10 x$, $100 x$, subtracting and dividing
20d	$\begin{aligned} & (\sqrt{50}+\sqrt{2})(\sqrt{50}+\sqrt{2})=50+10+10+2=72 \\ & \text { OR } \\ & (\sqrt{50}+\sqrt{2})^{2}=(5 \sqrt{2}+\sqrt{2})^{2}=(6 \sqrt{2})^{2}=72 \end{aligned}$	2	Award I mark for a correct use of $\sqrt{a} \times \sqrt{b}=$ $\sqrt{a b}$ seen or implied.

Year II Higher Non-Calculator Practise Paper I Mark Scheme

2 Ia	$y=\frac{16}{\sqrt{x}}$	2	Award I mark for forming a correct equation to show inverse proportionality of y and \sqrt{x} in terms of ${ }^{\prime} k^{\prime}\left(\right.$ e.g. $y \sqrt{x}=k$ or $\left.y=\frac{k}{\sqrt{x}}\right)$ and substituting in given values of x and y
2 Ib	64	2	Award I mark for deducing $\sqrt{x}=8$ or correct substitution of $y=2$ into their equation of the form $y=\frac{k}{\sqrt{x}}$
22	Trapezium	I	
23	$y=-\frac{3 x}{4}+\frac{25}{4}$	4	Award I mark for finding the gradient of OP $\left(=\frac{4}{3}\right)$ Award I mark for finding the gradient of the tangent to the circle at $\mathrm{P}\left(=-\frac{3}{4}\right)$ i.e. negative reciprocal of their gradient of OP Award I mark for a correct process to obtain correct equation e.g. substituting $(3,4)$ into $y=m x+c$ using their gradient of the tangent Accept answer in any equivalent form.
24	c. -2.5	2	Award I mark for a correct method seen or implied on the diagram to find the gradient of the tangent to the curve at $(-I, 3)$
25	$\frac{x+6}{2 x-3}$	3	Award I mark for a correct factorisation of the numerator e.g. $(x+6)(x-2)$ Award I mark for a correct factorisation of the denominator e.g. (2x - 3) $(x-2)$

26	3.6 km	Award I mark for a correct method to find the area of the trapezium Award I mark for 3600 m seen Condone missing units	
27	$3 \pi-9$	4	Award I mark for a correct method to find the area of sector AOB e.g. $\frac{1}{12} \times \pi \times 6^{2}(=3 \pi)$ Award I mark for $\sin \left(30^{\circ}\right)=\frac{1}{2}$ seen or implied Award I mark for a correct method to find the area of triangle AOB e.g. $\frac{1}{2} \times 6 \times 6 \times \frac{1}{2}(=9)$

